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EXECUTIVE SUMMARY

Periodically DCEC is tasked by DCA Headquarters to conduct what has been
commonly known as the "Flash Non-Blocking Study“. The purpose of this study
is to resize the AUTOVON network to be sure the crisis calls receive
non-blocking service. The main tool that has been used to conduct this study
is a simulation (event by event) model. This model is very computer
expensive. Typically, 50 hours of CPU time are required to conduct the study.

DCEC has a mathematical network sizing model that both DCEC and DCA
headquarters use to resize the AUTOVON for its day to day operation. This
model is extremely fast and requires only a few minutes of CPU to do a
particular sizing run. Because of characteristics of the crisis traffic this
model cannot be used in its current form for the Flash Non-Blocking studies.
This technical note is the first step in an attempt to modify the mathematical
model so it can be used on these studies.

The mathematical model requires the ability to simply predict the link
per formance of the class of traffic under consideration. In this technical
note we develop a sophisticated analytic link performance model and then use
it in a numerical analysis of the link behavior of crisis calls. This
investigation leads to the development of simply computable bounds which could
be used in our mathematical network sizing model. '
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{. TITRCDUCTION

Periodically, the Defense Communications Engineering Center (DCEZC)
conducts a study for the Defense Communications Agency (DCA), the "Flash
Non-Blocking Study" {1]. In this study a crisis scenario for the worldwide
AUTOVON system is analyzed and the network resized to ensure the crisis zalls
are not blocked in the network. This scenario postulates a certain number and
distribution of crisis calls that would have to be placed for the particular
situation being analyzed. These calls must receive non-blocking performance
from the AUTOVON network. The purpose of the study is to resize the links to

be certain that the required grade of service is received.

For normal resizing efforts of AUTOVON, DCEC uses its Network Design and
Analysis computer algorithm [2]. The current form of the algorithm can not
be used for the Flash Non-Blocking Studies because the arrival rate and
holding time characteristics of the crisis calls do not conform to the
algorithms assumptions for a normal AUTOVON call. Thus DCEC has been forced

to use an event by event simulation model to conduct the study.

After a typical simulation run, the engineer checks to see if the crisis
calls are receiving non-blocking service. If not, channels would be added and
deleted in the network based on engineering judgement and then another
simulation run is submitted. This trial and error process is continued until
the crisis calls receive the required non-blocking service. There is no
guarantee that this solution is the most economical one possible (i.e.,

optimum). For the normal resizing of AUTOVON via the DCEC Network Design and
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inalystis aigorithm tnis process is gone entirely by tha computer and a near

yptinum sotution is previded.

For each simulation run several replications have t0 be made because tnhere
are only a finite number of crisis calls trying to use the network and the
multinle renlications are required to attain statisticai confijence in tne
grade of service astimates from the simulation run. Thus, a significant
amount of computer CPU time is required; a typical Flash Non-8locking study

consumes about 50 hours of CPU time on the DCEC ITEL-ASS5 computer,

This technical note is an initial effort to reduce this computer run time
and provide a better tool to conduct the Flash Non-Blocking Type Studies. The
Network Design and Analysis algorithm has a mathematical network performance
model [3] that iteratively converges to the performance of the network under
consideration. The computer run time of this performance model is
significantly shorter (order of magnitude)than a comparable simulation run and
hence would be desirable for use on the Flash Non-Blocking studies. It

converges to the network grade of service by considering the blocking on each

1ink of the network. Since no mathematical 1ink performance model was
available which characterized the crisis calls, the network performance model

could not be used to address Flash Non-Blocking issues in the past.

In this technical report we present a mathematical 1ink performance model
for this system. Section II of this report describes the mathematical model,
as well as some special cases. Several numerical examples are given in

section I[I. Finally, a few concluding remarks are given in section IV.




[, A SATHEWATICAL “GDEL

1. ASSUMPTIONS AND GENERAL DESCRIPTION

In this section we present a mathematical model for the performance of
crisis calls on a link of a communications network wnere ordinary calls are
usually using the channels. We assume that there are C channels, the arrival
process of the ordinary calls is Poisson with parameter x , and their holding
time is exponentially distributed with mean 1/;. There are a finite number,

say M, of crisis calls that are going to attempt to use these channels. The

interarrival time between the mth and (m+1)St crisis call has a

distribution function, G(x), with mean 1/a.

No queueing of either class of calls is allowed and if a crisis call
seizes a channel, it will hold the channel for at least as long as it takes to
have all the M crisis calls attempt to use the channels. Thus, if the mth
crisis call occupies a channel, it will still be holding the channel when the

Mth crisis call attempts to find a full channel. We investigate the

behavior of the system with respect to the crisis calls.

Loss systems similar to this one have been considered in the past. The
main paper of interest is that of Kuczura [4]. In that paper the author
considers a loss system with two types of input processes, one Poisson and the

other a general renewal process. He shows that the blocking probability each

stream sees is different. Our system differs from his in the following ways.




First, one of our streams has only a finite number of calls that attempt to
use the channels; in Xuczura's paper there are basically an infinite numper of
calls. The second iifference is in the nature of how long the crisis calls
hold the channels once they seize a channel. [In Kuczura's paper it was
assumed that botn classes of calls had the same exponentially distributed
holding time distribution. In our system the ordirary calls have the standard
exponentiilly distributed holding time, but the crisis calls nold the channels
for a period of time tnhat is at least as long as it takes all crisis calls to
arrive, The final way our system differs from Kuczura's is that we allow the
crisis calls to preempt an ordinary call. We let g be the probability an
arriving blocked crisis call will preempt a ordinary call using the channels,

For a network interpretation of this quantity, see reference [5].

Another paper, by Fischer [6], considers a system similiar to the one
examined here, In that paper the author studies a loss system with two
classes of customers with priorities. The effects of different mean holding
times for eich class of traffic is studied. That system differs from ours in
that we only have 3 finite number of calls that are allowed to preempt and
they only try once during the period of interest, Furthermore, the nature of

the holding time for the crisis calls is different in our case.

We have M crisis calls attempting to use the C channels. These channels
are currently being used by ordinary calls with a load, p=A/u. We are
interested in studying the behavior of the system with respect to the crisis

calls during the period of time the M crisis calls attempt to use the

channels. In order to do so we need some transient resuits <or a standard




Marxovian 1ass system w~itn € cnannels, zall arrival rate o ang service rata o,

That is we need the transiant benavior of the system witn oniy ordinary caiis.

Let Q(t) be the number of ordinary calls in the system at time t and

r j(t)=Pr{ Q(t)=j|0(0)=i}; then from Riordan [7], when there are no crisis
calls arriving in [0,t], we have for i=0, ¥, ..., C, and j=0, 1, ..., C

) Lo Bput
r. (t) =b. +z lbk”’J)e k¥ (1)

where

, C-1i
Clo Fi (ek)Fj(eK)

b, (i,5)= = ; (3)
"R JT8. F (B IFJ( g +D)
with
Fo(z) = ]
S
Filz) =12 (t)o“ z(z+1) ... (z+k-1). (4)
k=0

The quantity Fé(ekﬂ) in equation (3) is the derivative of F.(z)

evaluated at $+1. The factorsek, k=1, 2, ..., C are the roots of the
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narher ot (risrs cal
a free coannel or Gt preempts an ordinary call), then there are j crisis calls
in o tne svatenm just after 1t arrivead. !'Intil the mtn ¢risis call arrives
tnere are C-j channels tor use by the ordinary calls., Thus between any two
successive crisis call arcivals the number of channels available to the
ordinary calls, denoted by n, could ben=0, 1, ..., C-j. The probahbility

(m) o . st
Pi,j will aetermine tiow many channels are available after the (m-1)

arrival,

We can use T 1.(t) and G(x ) to mathematicallv describe the behavior of

..

the ordinary calls during this time. Let us suppose the (m—])St crisis call
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We assume that before tne crisis calls start to arrive tne system has
reached steady state with respect to the ordinary calls. Furthermore, we
assume the initial crisis call sees the same distribution of the number of

ordinary calls in the system as an arriving ordinary call, so
i=0
(1)
= (8)

Pig " j

RER

where o, is given by equation (2).

when m>2 can now D& given as

A general recursion for P?m?

1,1
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where 0=i+j<C and P;m;=o if j>m. Thus from equations {8) and (9) we can
h recursively evaluate P§m3.

There are two measures of performance with respect to the crisis calls:

th

the probability the m~ crisis call is blocked, PB(m), and the probability

tne m™" crisis call is lost. The probability pe(M represents the \
probability the mth crisis call sees all the channels busy. Whereas,

PL(m) represents the disposition of the call upon arrival to the channels.

We have

pg (™ =i§=0 Py Cei (10) j
and

pL(m) = (1-)p8{™ +aPq ¢ (1)

We note when 8=0 PB(m)=PL(m) and define the average blocking and loss

M
pa{™ /M and pL=z, pL{™ M.

M
probabilities to be PBing

1 m&1
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In general, a closed form expression for H{“( that satisfies equation

(9) is nard to obtain. But, using tnat equation and equation (8), the values

of me) can be iteratively computed from P?"S]Lsing a computer., There are

’

however some special uses that allow us to obtain more insight into the

dehavior of the system.
2. THE SINGLE CHANNEL CASE (C=1)

In this case there is only one channel and so

p'l
(LY J—3T . (12) '
L Ee——— j=0
1, T+p
j=1

From equation (9), for m> 2 we have

(m). o m-2 m-1
Poo = 5 Ral1T7 Rypl1d (1-8)

(13)

(m), p m-1,7_pym-1
Pl Tr Ry, 0117 (1-8)

(m), 4.0 -y qm=2 m-1

. (m)
Since R]O[1] = 1Ry, (13, Pi,j only depends on




s b=na g

bis - Y T (L4)
dut for C=1 we nave »ﬁ=-l—,, see 7], and so

) DR TR - (. +-

PP v v

For the ath customer tne two measures of performance are his blocking

probability, p3{™ and 1oss probability, PL(M) . Form> 2, we have

pgli) . plm), pum)

1}
p—
)
85
~—
—
p—
(o))
~——

- D m-2 _ayo-1
—l—mR]][]] R]O[l](l 3)

and a loss probability, PL(m)

pLi™) = (1-8) pglmgp(m)

P (™ g[p{M)sp(My4gp (M)

(17)
p(m)_gp{m)

- et

=1 Ry 112 00-8)™ (R, L1 46R, 010),

For the case of m=1 the desired results are

pall) = &

10




(1-3)9,

L) -
i+p

Using equation (17) we have

3011-(Ry1[1](1-8))""}

PB = PL+ .
M(l4o) {1-R71011(1-3% (19)
where
1 Ml +p(1-8)MRy, (11471
PL-—M—{ 1l }, (20)

1 + p

These results can be even further simplified for the cases where 2=0 and

B=1. Wheng =0 the crisis calls does not return to preempt when blocked and

lj R]]['l]“]
PL = =( M-1+o0__ - -
Ml T+o (2])

= PB.

When 8 =1 the crisis calls always return to preempt when blocked and we have

=<
|
—

PLe (22)

and

Equation (22) agrees with one's intuition; all but the first crisis call is




T35+ and the Tirst is olocked with probability o /{1+0).

Several further results can be derived for this system by considering the

case where 3=0, For that situation we have

pa'\n)= P (m)

4

D m=1
1+p
ﬁ (23)
m-2
1 - 13_0 (Rll[]]) R [T] miz
\
and
P8 = PL o1
- i +°_RLl__[_1_]__) (24)
M »
1+p

It is straightforward to show, using equation (23), that for m=1, 2, ..., M

(m) < pplm+l)
pg\"/ = pg (25)
(m) _ st .. . . .
and 1im PB = 1, Thus the (m+1)”" crisis call sees a higher blocking .
m>o
than the mth crises call. Of course, the unequality makes sense, since the

crisis calls that contribute to the mth cal blocking will also contribute

to the (m+1)St crisis call blocking. If the mth call gets in then it also
contributes to the blocking of the (m+1)St call, and since the interarrival

distribution between two successive crisis calls is the same, the probability

12




tne (m*i)’t crisis cali gets plucked is greater tnan tae probavility Lae

m 0 call is nlocked.

The other results follow from equation (24) and is analogous to the
result established in Kuczura [4]. In that paper he considers a loss system

#ith two classes of arrivals, one whose arrival process was descrived by a

Poisson process and the other by a general renewal process. He shows, using
Jensen's inequality. that the blocking the general arrivals sees is minimized
when their interarrival distribution is deterministic. From equation (24) we
see that PB linearly depends on R]][l] where

Ryq[1] = P+ 201
14+p 1+p

Remembering that ¢ (s) is the Laplace transform of the interarrival
distribution of successive crisis calls, then from Jensen's inequality, !
R17[1] is the smallest when that distribution is deterministic. The

distribution that minimizes R]][T] also minimizes PB.

3.  MEAN TIME BETWEEN CRISIS CALL ARRIVALS IS ZERQ (o =)

For this case and the next one we assume the interarrival distribution of
successive crisis calls is exponential. Here, the crisis calls all show up at
the same time and since they see the same distribution as the ordinary calls,
the probability the mth crisis call is blocked is the probability there are
(C-m+1) or more ordinary calls present. So for m<C+]1 we have (Q is the steady

state number of ordinary calls in system)

13




(26)

and PB(m)=] for m>C+1.

The expression for PB(m) given by equation (26) does not depend on the

capability of evaluating Pgmgzi , for i=0, 1,

««+sC. Unfortunately,

developing an expression for PL(m) necessitates a knowledge of what
(
PO,EZ is. In general

pLi™ = (1-g)p8(™+ P((J“‘%,

but Pémé equals the probability there are C crisis calls in the system
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Just after tne (rn-1)°t crisis cail arrives. Let U;“) ne tne

3 . : . ti s
probability there are r crisis calls in the system just after them T crisis

{
call arrives and decides whether or not to preempt. Define U\O)=1 and
0

)

U(ﬂ =0 for r>m; then

4 @) (md) )
JO = UO PL
U"l_ - U(mr-—]l) U-PL(m))* U(L"']) PL (m) ler<m-1 (27)

U(m) = U(m- ) (1_pL(m))

m m-

iteratively defines 0D in terms of U@ and pL(m)

th

The loss probability for the m~ crisis call can be given by

B n=1

pr®) = (28)

() . (m-1)

(1-8)PB~ +8U" w2

where Eg(e,C) is Erlang's Loss Formula. So we can use equation (28) to

evaluate PL(l),then equation (27) to recursively determine U(g), r=0,1.

(2)

(AN

' These probabilities can be used via equation (28) to determine PL and so

on.
4. MEAN TIME BETWEEN CRISIS CALL ALRIVALS IS INFINITE (q=0)

[ For this case the average time between successive crisis call arrivals is




wrinite.  Tars implias tnat, after tha Tast crisis mall ar-~ives ana taera ars
r crisis ciils in the system, tne probanility the next crisis caii sees i

ordinary calls present is given by

[C-r]= L i=0,1,...,C-r. (29)

independent of k.

Using the probabilities defined in equations (27) and (28)

we have
m-1
pp () = Ur(m_l)EB(p,C-r)
r=0
(30)
(m) -
PL = (-;ps@agy OV

Although difficult to show mathematically, it is intuitively true that the
values of PB(m) and PL(m) given by equations (26) and (28) serve as upper
bounds on these probabilities for an arbitrary value of a. Furthermore, the
values given by equations (30) are lower bounds on PB(m) and PL(m) for
any a.  This statement is demonstrated in the numerical examples we present

in the next section.

16




(D1, SuMD HUMERICAL XAMPLES

In all the numerical examples tnat we considered, we have assumed the
interarrival distribution between successive crisis calls is exponentially

1

distributed with mean a~'. Thus ¢(-6ku) in equation (7) is given by

o (31)
A e

In this section we examine PB and PL as a function of @ and B . We also

present some numerical results for PB(m) and PL(m) as a function of 8.

For a given value of A,u,a, C and M several significant numerical problems
have to be overcome before P(?g can be recursively evaluated using equation
(9). The first problem is the determination of the roots of n roots 61,65 ... 8

of the equation

F,(z+1)=0,

where n=0,1,...,C. We used the Laguerre's jteration method [8] as suqggested
by Kuczura [4] to find these roots. We also followed some of the helpful
numerical hints Kuczura discovered when he was forced to find these roots.
Even for moderately small values of C, say (=20, the behavior of the function
Fc(z+1) is extremely erratic and care must be taken in any numerical procedure
attempting to find the roots. Finally, it should be pointed out that the
function Fc(z) and hence Fcfz) can be recursively evaluated using the

relations given in [4] or [7]. Finding the roots poses the biggest numerical

17
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problem one 73S %0 Tice,  The remiining Computationdl si2ps are

. - . - ‘!
strafantforaart in getermining Py,

n\

T

Table [ presents the sensitivity of 95< and PL(n> to tne propaniiity
of preamption. For tnat table, (=15, M=20, .=15 erlangs and =10, When = =
ve had Ps(m)=PL(m), Sut as dapproached 1, DL(m) wiS 3pproacning zero ror
m<{=15 and 1 for m- =15, It is interesting to see what haopens to PB‘m)
as 3~1. For msmall the value of PB(“) remains relatively constant as g-1;
but as m approaches M this is not true. Table I also demonstrates a result we
gave for the case C=1; that is, PB(m)i.PB(m+]>. For tnis table we see

fm) ; . . . .
tnat P8"™ and PL(") are both monotonically increasing in m.

Figure 1 gives a family of curves for the average blocking and loss
probability as a function of ; for ordinary loads of 5, 15 and 25 erlangs. The
sotid lines are the blocking probability and for each of the three cases it
appears that PB is a linear function of 8 . The dashed lines give the average
loss probability. At =0 we have PB=PL and when g8=1 all three curves for the
average Jloss probability converge to the same value (.33). As expected, PB is
monotonically increasing ing whereas PL is monotonically decreasing. With

regard to PL, it is interesting to point out that its lower bound is (M-C)/M

for M >C and the upper bound is PB at 8=0.




TABLE . SENSITIVITIES OF INDIVIDUAL 3LOCKING AND LOST 2ROBA3I.ITIES

T THE PROBAZTLITY OF PRECMPTION

£=15, =20 =15 and . =10)
: 0 J 2 R ); .8 1.9
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In section Il we looked at two special cases dealing with the mean

interar-ival time between successive crisis calls. Figure 2 gives a

numerical consideraticon of these cases. As a function of the mean J
interarrival time {1/ (), the sensitivities of the average blocking probability i
(PB) and the averdge loss prohability (PL) are given for three ordinary
loads. When -0 the mean interarrival time gets large and the values of
PB(m) and PL(m) (and hence PB and PL) given by eqguation (30) serve as the
lower bound on the average loss and blockina probabilities. Analogously,
when a--, equations (26) and (28) give upper bounds on these probabilities.

Again, as we pointed out in section II, PB and PL are monotonically increasing

in a.
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Figure 1. Sensitivities of Average Blocking and Loss Probabilities
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[V. CONCLUSIONS

In this technical note we present a mathematical model for the link
behavior of crisis calls that may or may not preempt ordinary calls. This
investigation was conducted in order ty gain a d2tt2r undzrstanding of the
behavior of the system with regard to the crisis calls. Armed with this
information, we are now in a position to modify the DCEC netwark perfgrmance
model so that computer-expensive event-by-event simulations will not have to

be cun for each Flash Non-Blocking Study.

Besides the development of the mathematical model, the two main findings
of this report are the bounding of the average loss and blocking probabilities
by expressions which are easily computed, and the monotonic property of these

probabilities with respect to the mean time between crisis calls arrival, '

We can elaborate a bit more on this second finding. For the case where

C=1 and B =0, from equation (24) we have

] Ry 17"
PB=PL=2 (M-1+ & - (32)
M o]
where
0 ® (u+d) (33)
R, — ’ 1+p
11 140 '

If the interarrival time is exponentizlly distributed then
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The monotonic behavior of P8 and PL can be easily seen frcm equations (32),

(33) and (34).

In fact, the factor a/u is the driver in this monotonic behavior property.
: That quantity (a/u) 1s the ratio of the mean ordinary call holding time to the
% mean interarrival time of the crisis calls. As the time period between
crisis calls tends to become much longer than the average holding time of the
ordinary calls, then «/u - 0 and PB and PL approach the lower bound.
At the other extreme, as the time period between crisis calls becomes much
shorter than the mean holding time of ordinary cails, congestion becomes

more prevalent and PB and PL approach the upper bound.
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